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 Discovery of Thyroid Hormone Transmembrane 

Transporters 

 The concept of plasma membrane transport of thyroid 
hormones (TH) was first approached in the 1970s by Go-
vind Rao and Heinz Breuer in Germany  [1]  and Georg 
Hennemann in the Netherlands  [2] , followed by Jack 
Robbins, Jacques Blondeau and several others. The un-
specific association of radiolabeled TH with cells always 
represented an issue, but several laboratories showed sat-
urable and stereo-specific uptake indicative of plasma 
membrane transporter action. Initially only few trans-
porters, and none of them TH transporters, were cloned 
(e.g. LacY, the  Escherichia coli  lactose permease). It con-
stantly remained an issue in the field whether TH uptake 
into cells was energy dependent, could be competed with 
bile acids and amino acids, or had K m  values in the nano-
mole or micromole range. From the 1990s, expression 
cloning of transporters led to the identification of several 
transporter gene families and subsequent screening of 
cloned transporters for TH uptake led to the identi-
fication of several additional TH transporters  [3] . The 
identification of monocarboxylate transporter 8 (MCT8,
SLC16A2) as a specific and very active TH transporter  [4]  
paved the way to the finding that mutations in the MCT8 
gene cause a syndrome of psychomotor retardation in hu-
mans  [5, 6] . Only then was it realized that the Allan-
Herndon-Dudley syndrome, an X-linked mental retarda-
tion syndrome first described in 1944  [7] , is actually 
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 Abstract 

 Thyroid hormones (TH) cross the plasma membrane with the 
help of transporter proteins. As charged amino acid deriva-
tives, TH cannot simply diffuse across a lipid bilayer mem-
brane, despite their notorious hydrophobicity. The identifi-
cation of monocarboxylate transporter 8 (MCT8, SLC16A2) as 
a specific and very active TH transporter paved the way to 
the finding that mutations in the MCT8 gene cause a syn-
drome of psychomotor retardation in humans. The purpose 
of this review is to introduce the current model of transmem-
brane transport and highlight the diversity of TH transmem-
brane transporters. The interactions of TH with plasma trans-
fer proteins, T 3  receptors, and deiodinase are summarized. It 
is shown that proteins may bind TH owing to their hydro-
phobic character in hydrophobic cavities and/or by specific 
polar interaction with the phenolic hydroxyl, the aminopro-
pionic acid moiety, and by weak polar interactions with the 
iodine atoms. These findings are compared with our under-
standing of how TH transporters interact with substrate. The 
presumed effects of mutations in MCT8 on protein folding 
and transport function are explained in light of the available 
homology model. 
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caused by loss-of-function mutations in MCT8  [8] . Even-
tually, it took these four publications to convince the field 
that TH require plasma membrane transport proteins. 
From then the field grew rapidly and our appreciation of 
the roles of TH transporters in TH physiology has pro-
gressed significantly within only one decade.

  Physiological Effects of TH Transporter Deficiency 
 Patients carrying mutations in MCT8 exhibit high T 3 , 

low/normal T 4 , and normal TSH levels  [9, 10] . Mice de-
ficient in  Mct8  display the same hormone constellation 
and represent a good model to study the role of Mct8 in 
the regulation of the TH axis  [11, 12] . However, these 
mice exhibit only a mild neurological phenotype very 
much unlike the corresponding patients  [11–13] . The ex-
pression pattern of Mct8 in neurons, pituitary, thyroid, 
liver, and kidney may explain why Mct8/MCT8 is impor-
tant in mice and humans, but did not offer an explana-
tion for the phenotypic differences between mice and hu-
mans  [13–17] . One possible explanation could be the 
 expression of the  L -type amino acid transporter 2 (Lat2, 
SLC7A8) in developing murine, but not human, neurons 
 [13, 18, 19] . Another explanation could be that mouse 
brain microcapillary endothelial cells express the T4-spe-
cific transporter Oatp14  (Slco1c1), while human cells do 
not but depend on MCT8 instead. Accordingly, mice de-
ficient in Mct8 and Slco1c1 suffer from cerebral hypothy-
roidism and exhibit a neurological phenotype with re-
tarded maturation of a subset of GABAergic interneurons 
 [20] . For a more in-depth discussion of TH transporter 
physiology, the reader is referred to several recently pub-
lished reviews  [21–23] . In this review we highlight the 
diversity of TH transmembrane transporters and how TH 
presumably interact with proteins.

  Structure and Transport Mechanisms of 

Transmembrane Transporters 

 Most plasma membrane transporter proteins in hu-
mans are members of the ATP-binding cassette (ABC) 
and solute carrier (SLC) gene families that together com-
prise about 400 genes in humans. Transporters are also 
classified according to their energy source: primary active 
transporters usually use ATP to take up or extrude solutes 
from the cells 1  and multidrug resistance proteins are 
probably the best known among them in eukaryotes. Sec-

ondary active transporters harness an electrochemical 
gradient, e.g. Na + , H + , or glutamate, to move solutes 
across the membrane in a symport or antiport mecha-
nism. Finally, uniporters facilitate diffusion along the 
concentration gradient of the substrate and are therefore 
called facilitators ( fig.  1 ). All known thyroid hormone 
transporter proteins are members of the SLC gene family.

  Transporters can also be classified according to their 
polypeptide chain fold patterns. Interestingly, known TH 
transporters fall into different classes: the NhaA fold 
(structure solved for ASBT Yf ), the major facilitator super-
family (MFS) fold (exemplified by GlpT), and the LeuT 
fold (exemplified by the AdiC structure). The apical so-
dium bile acid transporter (ASBT) family folds into two 
inverted segments of 5 transmembrane helices each. Both 
segments contain one helix (No. 4 and 9) which is un-
wound in the center where both interact and form the 
substrate-binding site ( fig. 2 ). Transporters of the MFS 
class contain 12 transmembrane helices arranged as two 
bundles of each 6 helices that can exert a rotatory move-
ment against each other. During this movement, the pro-
teins pass sequentially through conformations that allow 
alternating access from both sides of the membranes to 
one central binding site. This transport mechanism is also 
known as the ‘rocker switch mechanism’. The LeuT fold 
is well studied, because sodium-dependent neurotrans-
mitter transporters fall into this class. These transporters 
are arranged as two modules of 5 transmembrane helices, 
but this time the first helix in each module is discontinu-
ous and participates in substrate binding. Energy cou-
pling in secondary active transporters is a field of active 
discussion  [24] , but it appears as if Na +  ions and protons 
are harnessed to neutralize anionic side chains or sub-
strates to allow closure of transporters around their sub-
strates and initiation of transport ( fig. 2 ).

  The Rocker Switch Model 
 The prototypic transmembrane transporter protein of 

the MFS class is lactose permease (LacY) from  E. coli . This 
protein has been studied for several decades and a pleth-
ora of functional data was finally interpreted in light of 
the crystal structure which was published in 2003  [25] . 
The structure of the glycerol-phosphate transporter GlpT 
was published in the same year, and from the first two 
MFS protein structures published it became evident that 
these adopt similar structures  [26] . In the meantime, six 
prokaryotic (and recently one eukaryotic  [27] ) MFS pro-
teins have been crystallized in – luckily – different con-
formations each. Assuming that MFS proteins in princi-
ple function alike, a sequence of six conformations can be 

  1     In prokaryotes energy sources are quite diverse, e.g. including photons 
in the case of light-driven proton pumps. 
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  Fig. 1.  Summary of transmembrane transporter classes. Channels 
are pore-forming proteins which open a gate in a ligand- or electric 
potential-dependent manner. Transporters are proteins which 
change their conformation and thereby transport a ligand from 
one side of the membrane to the other. Human ATP-dependent 
transporters work against a gradient as exporters (primary active 
transport). Secondary active transporters harness the electro-
chemical gradient of one solute to drive the transport of another 
solute in a symport or antiport mechanism. Uniporters facilitate 
diffusion of a solute along its gradient, but may exhibit different 
affinities for the solute depending on the direction of transport. 

  Fig. 3.  Rocker switch model of transmembrane transport. Trans-
porters pass through a sequence of conformations, which allow 
solutes alternate access to a central binding site from the two faces 
of the membrane. Shown is the example of a uniporter, but second-
ary active transport is easily incorporated in this model. 

  Fig. 2.  Topology diagrams along with ex-
perimental structures of transmembrane 
transporters. The ASBT family has ten 
transmembrane helices (TMH). Substrate 
(star) is bound between two interrupted 
helices, TMH4 and TMH9. MFS proteins 
are arranged as two bundles of six consecu-
tive TMH each, which form a central sub-
strate-binding site at the interface of the 
two bundles (amino acids in MCT8 partic-
ipating in transport are indicated). LeuT 
fold transporters are arranged as two 5-he-
lix inverted repeats followed by two TMH 
which do not participate in pseudo-sym-
metry. The substrate-binding site is formed 
by two interrupted helices, TMH1 and 
TMH6. The helices are colored from violet 
(helix 1) to red (helix 12). 
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assembled through which MFS proteins likely pass while 
transporting substrate  [28] . In those structures in which 
substrate is present, one centrally located binding site is 
recognized involving amino acids that are known from 
biochemical experiments to participate in transport. As 
mentioned above, two bundles comprising 6 transmem-
brane helices move against each other during transport 
( fig. 3 ).

  However, from transporters crystallized in more than 
one conformation (e.g. FucP), it is also evident that heli-
ces may change their lengths during structural transitions 
or may be kinked in one but straight in another confor-
mation. These joints may often be apparent from the pri-
mary structure by prolines and glycines in the middle of 
helical segments and mislead programs designed to pre-
dict transmembrane helices. The lack of a set of structures 
of the same protein in all different conformations makes 
it difficult to predict exactly how the transporters perform 
their movements, what the source of energy for the move-
ments are, and how the substrates or co-substrates help 
induce the conformational changes  [28] .

  Modes of TH Binding by Proteins 

 Several different types of protein bind TH, plasma pro-
teins, receptors, enzymes, and transporters. The first 
studies how TH bind to protein have focused on the plas-
ma transfer protein transthyretin (TTR). Crystal struc-
tures for human and rat TTR have been solved  [29–31]  in 
the presence of several different ligands. In short, two 
binding sites are present at two ends of a central hydro-
phobic channel that is formed by the interfaces between 
two TTR dimers. While the peptide main chains exhibit 
twofold symmetry, hormones are not bound symmetri-
cally, because T 4  adopts an almost skewed conformation 
which is not symmetrical. Each binding site contains sev-
eral largely hydrophobic pockets formed by a main chain 
and side chains of β-sheets which can each accommodate 
one iodine atom from TH. The innermost binding pock-
et also allows nucleophiles (e.g. Ser-OH) to form polar 
interactions specifically with iodine at a similar energetic 
gain as in a weak H-bond. The polar interactions of the 
amino and carboxyl groups with Lys and Glu residues at 
the channel entrance are probably of less importance to 
hormone binding  [31] . The remainder of the binding site 
is largely a hydrophobic channel that accommodates the 
two aromatic rings ( fig. 4 a).

  Human serum albumin (HSA) was also crystallized in 
complex with T 4   [32] . It was found that depending on the 

presence of fatty acids, 4–5 T 4  molecules can bind to one 
HSA molecule and the binding sites were denoted Tr1–
Tr5. Tr1 is surrounded by five α-helices and known to 
mediate drug or fatty acid binding, too. T 4  is wedged into 
a hydrophobic binding pocket, where a Tyr and an Arg 
coordinate the 4 ′ -hydroxyl group. Only the aminopropi-
onic acid moiety is exposed to solvent and interacts with 
K199 and R218 ( fig. 4 b). Interestingly, the latter interac-
tion appears strained, and mutations in R218  [33, 34] , 
which lead to smaller side chains, relax the protein and 
lead to familial dysalbuminemic hyperthyroxinemia, a 
condition with abnormally high plasma T 4  levels due to 
increased binding to HSA  [35, 36] . Notably, iodine atoms 
make contacts with main chain and side chain nucleo-
philes as observed in TTR. Tr2 also binds fatty acids in the 
absence of T 4 , but is remarkable in that it allows only buri-
al of the phenolic ring in a largely hydrophobic cleft, 
where a Ser and Tyr coordinate the 4 ′ -phenolic group. 
The other ring is halfway solvent exposed and the amino-
propionic acid moiety completely exposed to solvent. The 
latter binding site as well as Tr3 and Tr4 may only be 
available for T 4  binding in the absence of fatty acids. In-
tegrating the effects of fatty acids and familial dysalbu-
minemic hyperthyroxinemia mutations on T 4  binding, 
the authors suggested that only Tr1 represents a physio-
logical T 4 -binding site  [32] .

  More recently the structure of TH-binding globulin in 
complex with T 4  was reported  [37] . The T 4 -binding site 
is found on the surface of an antiparallel β-sheet and 
framed by two α-helices. The TH is mainly held by hydro-
phobic interactions, including binding pockets for iodine 
atoms. The 4 ′ -phenolic group is coordinated to a lysine 
amine group which is further stabilized by a serine. The 
aminopropionate group is weakly coordinated by two su-
perficial interactions: an H-bond between Asn and the 
amino group and a salt bridge between the carboxylate 
and an Arg guanido group.

  Crystal structures have also been determined for thy-
roid hormone receptors (TR)-α and -β in complex with 
ligands  [38] . In both receptors, T 3  is almost completely 
covered in a hydrophobic pocket. The aminopropionic 
acid moiety is bound in the core of the protein by a con-
served Arg residue and the amino group makes a main 
chain contact with a nitrogen. The 4 ′ -phenolic hydroxyl 
is interacting with a His from helix 12, which is ordered 
through this interaction to promote binding of co-activa-
tor  [38] . With the exception of a conserved Ser which 
comes close to an inner ring iodine, the His-Arg clamp 
provides the only polar interactions by side chain residues 
in TR ( fig. 4 c). Their relevance is underlined by mutations 
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  Fig. 4.  Schematic representation how TH interact 
with proteins.  a  The iodothyronine molecule is 
largely hydrophobic, but the 4 ′ - and aminopropi-
onic acid moieties are hydrophilic. Hydrophobic 
interactions account for most of the TH binding, 
while interactions with the 4 ′ -hydroxyl and some-
times the aminopropionic acid moiety confer ad-
ditional specificity.  b  Polar contacts in the binding 
pocket for T 4  in HSA. The hormone is in a  cisoid  
conformation, i.e. phenolic ring and aminopropi-
onic acid are on the same side of the tyrosyl ring.
 c  Polar and hydrophobic contacts in the binding 
pocket for T 3  in TR-β. The ligand is in the extended 
conformation. Note the conserved polar contact of 
Ser with iodine. 
  Fig. 5.  Pathological mutations may change trans-
membrane helix (TMH) insertion into the mem-
brane. TMH2 and TMH12 from the MCT8 homol-
ogy model are depicted with each three missense 
mutations which inactivate the protein. Mutations 
in TMH2 affect TH transport, but are translocated 
to the plasma membrane, indicative of near-normal 
folding. Mutations in TMH12 disrupt plasma mem-
brane translocation. Compared to wild-type MCT8, 
all three mutations lead to unfavorable free energy 
changes reducing the driving force for correct 
membrane insertion.                 
  Fig. 6.  Homology model of MCT8.  a  The model is 
based on the structure of the bacterial glycerol-
3-phosphate transporter GlpT. TMH1 is violet and 
TMH12 is red. In the top view, i.e. from the extra-
cellular side, a central channel is apparent which is 
closed on the extracellular side.  b  Missense and 
small indel mutations mapped on the homology 
model of MCT8. P321L is located at the interface of 
the two 6-helix bundles and G401R marks a sharp 
kink between the horizontal helix and TMH7.               

  4    5  
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in patients with resistance to TH, which hamper co-acti-
vator recruitment, or in somatic mutations in cancer cell 
lines. Recently, a second, non-canonical TH-binding site 
has been observed in TR  [39] . The hydrophobic patch the 
TH binds to appears quite shallow and forms only one 
pocket to accommodate an inner ring iodine. Interest-
ingly, this is in close contact with the hydroxyl from a Thr. 
The aminopropionic acid moiety is tightly locked into an 
H-bond network comprising of an Arg and Glu coordi-
nating the carboxylate and amino groups, respectively, 
and Gln which coordinates both functional groups from 
one side  [39] .

  Deiodinases are enzymes that mediate the removal of 
iodide from TH thereby activating (T 4  to T 3 ) or inactivat-
ing TH (T 4  to rT 3 , T 3  to T 2 )  [40] . In the recently solved 
crystal structure of murine deiodinase 3  [41] , a substrate-
binding cleft has been observed that is compatible with 
substrate pinching between His202 and Arg275, with 
Glu259 possibly interacting with the amino group. Al-
though no enzyme-substrate complex structure is avail-
able at the moment, mutagenesis of the conserved His, 
Glu, and Arg residues in different deiodinases has re-
duced their activities consistent with a possible substrate-
binding site between His and Arg. More precise under-
standing of TH binding in deiodinases has to await a 
high-resolution enzyme-substrate structure.

  Taken together, TH are bound in hydrophobic tunnels 
or grooves where one to three iodine atoms are snugly fit 
into hydrophobic pockets, which sometimes involve also 
nucleophilic hydroxyl groups or main chain atoms. The 
polar 4 ′ -hydroxyl or aminopropionic acid moieties may 
remain exposed to solvent in some instances, but are in 
other instances involved in H-bond networks often in-
volving Arg/Lys, Glu, His, Tyr, and Asn or Gln. In TR and 
possibly in MCT8, TH is pinched between a His and an 
Arg residue  [42] . In none of the presented structures were 
polar interactions observed with the phenol ether oxygen 
( fig. 4 ).

  TH Transporters 

 Early studies by Rao et al.  [1]  and Krenning et al.  [2]  
have determined a high-affinity/low-capacity and a low-
affinity/high-capacity transporter in rat primary hepato-
cytes with K m  values of 52 and 22 n M  and 1.4 and 1.8 μ M , 
respectively. In hindsight, these results agree excellently 
with today’s knowledge being compatible with the high-
affinity transporter being the sodium-taurocholate trans-
porting polypeptide (NTCP, SLC10A1), a sodium-de-

pendent transporter expressed only in liver, and Mct8, a 
high-capacity transporter with a K m  of 1–5 μ M   [4, 43] . 
The energy dependence of the high-affinity transporter 
which was early observed agrees with the Na +  depen-
dence of NTCP  [2] .

  TH Transporters of the Bile Acid Transporter Gene 
Family 
 In a screening approach, the group of Theo Visser  [44]  

characterized NTCP expressed in  Xenopus  oocytes as a 
TH transporter. NTCP is an integral membrane protein 
of the ASBT family and takes up taurocholic acid in a 
symport mechanism with sodium. NTCP is exclusively 
expressed in hepatocytes where it participates in entero-
hepatic bile acid circulation. Rat NTCP stimulated the 
sodium-dependent uptake of T 4 , T 3 , rT 3 , 3,3 ′ -T 2 , and re-
spective 4 ′ -sulfo-conjugates into oocytes  [44] . Recently, 
the crystal structure of ASBT Yf , a bacterial homolog of 
NCTP, has been solved  [45] . In the proposed mechanism, 
binding of Na +  ions prepares the binding site for the con-
jugated cholic acid between the two interrupted helices 4 
and 9 ( fig. 3 ).

  TH Transporters of the Amino Acid Transporter 
Family 
 The system L of amino acid transporters was found to 

be inhibited by TH in astrocytes  [46] . This system is com-
posed of a transporter of the MFS family, SLC7A5 (LAT-
1) or SLC7A9 (LAT-2) and a heavy chain subunit that 
serves as an ancillary/escort protein needed for plasma 
membrane expression, SLC3A1 or SLC3A2. The Visser 
group also followed up on earlier work from Blondeau’s 
laboratory and others that characterized TH uptake into 
neurons, astrocytes, and other cell types as sensitive to 
competition with aromatic amino acids and the LAT in-
hibitor BCH  [47] . Lat1 and to a lesser extent Lat2 medi-
ated T 3  and T 4  uptake into  Xenopus  oocytes  [47] . Genetic 
inactivation of  Lat2  indeed reduces TH uptake into cul-
tured astrocytes  [18] . Thus, Lat2 may play a role in brain 
TH metabolism. Lat1 is widely expressed, also in brain 
microvascular endothelial cells, but its expression is ap-
parently essential  [48] . To define the physiological role of 
Lat1, we have to await a cell type-specific  Lat1 -deficient 
mouse model in the brain. The LAT transporters belong 
to the LeuT family of transporters. Recently, a homology 
model of Lat1 has been presented. The model is based on 
the crystal structure of the arginine:agmatine antiporter 
AdiC from  E. coli   [49]  .  Based on a virtual ligand screen 
with the homology model, the authors predicted correct-
ly that Lat1 can transport iodotyrosines  [49] . In the AdiC 
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structure, Arg is bound by main chain atoms from the 
transporter interacting specifically with the  L -amino acid 
moiety and explaining the specificity for amino acids 
 [49] . A hydrophobic pocket close by accommodates the 
amino acid/substrate side chain and leaves space for TH. 
Interestingly, in a similar homology model of LAT2, an 
Asn-to-Ser mutation possibly created a novel polar inter-
action with an iodine atom within the hydrophobic pock-
et. This mutation enhanced 3,3 ′ -T 2  transport activity 
 [50] .

  TH Transporters of the OATP/SLCO Gene Family 
 Organic anion-transporting polypeptides are a large 

gene family involved in the transport of many metabolites 
and xenobiotics. These proteins usually have a broad sub-
strate specificity. Oatp1 was cloned from rat as an organ-
ic anion transporter  [51]  and was later shown to mediate 
cellular uptake of TH  [44] . Oatp1/Slco1a1 transported T 4 , 
T 3 , rT 3 , 3,3 ′ -T 2 , and respective 4 ′ -sulfo-conjugates into 
 Xenopus  oocytes  [44] . However, this gene has no ortholog 
in the human genome, and the close homolog, OATP-A/
SLCO1A2 is a bile acid, but not TH, transporter. Oatp2 
and Oatp3 have been cloned from rat and shown to trans-
port TH, but are not found in the human genome  [52] . 
OATP-E/SLCCO4A1 was cloned from human brain and 
transports T 3  at K m  of 6.5 μ M  and T 4  at K m  of 8 μ M   [53] . 
This transporter is also present in rodents  [53] . SLCO4C1 
was cloned from human kidney and transports T 3  at a K m  
of 1.9 μ M   [54] .

  Oatp14/Slco1c1 was identified as a T 4 -specific TH 
transporter predominantly expressed in brain with a K m  
of 90 n M   [55, 56] . It is expressed in brain microvascular 
endothelium and is involved in brain T 4  uptake  [57] .
SLCO1C1 belongs to the MFS family of 12-transmem-
brane helix transporters. Accordingly, a homology mod-
el of rat Oatp14 based on the crystal structures of three 
MFS proteins (LacY, GlpT, EmrD) has been presented 
 [58] . While the transporter likely resembles one of the 
homology models, significant uncertainty remained, and 
no specific interactions between protein and its substrate 
T 4  have been identified  [58] . It thus remains unclear how 
the protein achieves its remarkable substrate specificity of 
accepting T 4  and rT 3 , but not T 3 .

  TH Transporters of the MCT Family 
 MCT have been named according to the substrates of 

MCT1–4, pyruvate and lactate  [59] . MCT1 was initially 
cloned as a point mutant that was able to transport meval-
onate and later found to transport pyruvate  [60] . Several 
MCT require escort proteins of the immunoglobulin su-

perfamily. The two MCT able to transport TH, MCT8/
SLC16A2 and MCT10/SLC16A10, do not need ancillary 
proteins to reach the plasma membrane  [61] , but are 
known to form multimers  [62] . MCT10 had been previ-
ously characterized as the T-type amino acid transporter, 
TAT1, which transports aromatic amino acids. Interest-
ingly, MCT10 transports T 3 , but not T 4   [63] . MCT8 is 
highly homologous to MCT10 and able to transport T 4 , 
but inactive as an amino acid transporter  [64] . As men-
tioned above, human and rat MCT8 is a specific TH trans-
porter accepting T 4 , T 3 , rT 3  and 3,3 ′ -T 2   [4, 43] . A detailed 
study of possible substrates revealed that MCT8, is spe-
cific for  L -enantiomers of TH, requires both the amino 
and the carboxy groups, and at least one iodine atom in 
each iodothyronine ring  [43] . Several compounds that 
compete with TH binding in serum proteins or deiodin-
ases do not affect MCT8, underlining its remarkable spec-
ificity  [43] . Desipramine, an inhibitor of LeuT, also inhib-
its MCT8 and MCT10, despite the fact that MCT belong 
to the MFS, while LeuT belongs to the LeuT family of 
transporters  [65] . Moreover, several tyrosine kinase in-
hibitors interfere with the TH axis by non-competitive in-
hibition of MCT8  [66, 67] .

  We hypothesized that MCT8 may interact with its ami-
no acid substrates via charged amino acids which should 
be located within transmembrane regions to interact with 
the predicted central substrate-binding site in MFS trans-
porters. Hydropathy plots are of limited accuracy to pre-
dict transmembrane helices in transporters which change 
helix lengths upon transport movements or introduce 
sharp kinks in helices within the lipid phase. We therefore 
generated a homology model of MCT8 using  E. coli  GlpT 
as a template  [43] . Two amino acids, Arg445 and Asp498, 
caught our attention owing to their predicted location 
within the membrane plane. Mutation of each amino acid 
to Ala completely inactivated the enzyme towards TH and 
homologs without carboxy or amino groups, respectively. 
Rather, the homology model predicted a salt bridge be-
tween both amino acids in the inward-open conformation 
 [43] . The relevance of this pair of charged amino acids was 
recently supported by independent experiments which 
also showed that a charge reversal mutant, Arg445Asp/
Asp498Arg, regained activity  [68] . A salt bridge also sta-
bilizes a conformation in MCT1, but in this protein the 
interaction occurs between amino acids within one helix, 
while in MCT8 the interaction is between two transmem-
brane helices  [43, 69] . Based on the finding of a TH-bind-
ing His-Arg pair in TR and Dio3  [38, 41] , we tested wheth-
er His-Arg pairs spaced by about 16 Å could be found in 
the MCT8 homology model. His192 occurs in transmem-
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brane helix 2 at the same position as the substrate-binding 
Asp45 in GlpT  [42] . Targeted mutations probing position 
192 in MCT8 revealed effects on transport activity  [64] . 
The location of His192, however, suggests substrate inter-
action in the outward-open conformation, which was not 
modeled. His415 and Arg301 constitute another His-Arg 
clamp, which, according to our model, satisfies the geo-
metrical constraints in the modeled inward-open con-
formation as seen in TR  [64] . Effects of mutations on
TH transport are compatible with a role of both residues 
in MCT8-mediated substrate transport. Interestingly, 
His415 occupies the same position in MCT8 as Phe in 
MCT1, which, when mutated to Cys, makes MCT1 a me-
valonate transporter  [60] . In a completely independent 
approach, chemical modification of MCT8 histidines with 
diethylpyrocarbamate (DEPC) supported a role of His192 
in TH transport  [70] . His415 may be buried too deeply to 
be accessible for extracellular DEPC. Similarly, chemical 
modification of cysteines suggested Cys481 and Cys497 
close to the transport channel  [71] . Again, since we only 
have a homology model of the inward-open conformation 
of MCT8, these findings with a non-cell permeant reagent 
are hard to interpret. A model in the outward-open con-
formation is therefore needed.

  Based on the high sequence identity between MCT8 
and MCT10, we hypothesized that those sequence differ-
ences that are located along the substrate translocation 
channel should be responsible for the different substrate 
specificity between MCT8 and MCT10, namely the trans-
port of T 4  by MCT8, but not MCT10. We showed recent-
ly that several amino acid exchanges suffice to turn 
MCT10 into a T 4  transporter  [72] . Our homology models 
of MCT8 and 10 may thus be of suitable accuracy to fur-
ther explore possible protein-substrate interactions.

  Molecular Pathology of Pathogenic MCT8 Mutations 

 Genotype-phenotype studies on MCT8 mutations 
have been performed several times  [73–77] . With few ex-
ceptions, all described mutations in MCT8 severely im-
paired TH transport and led to severe phenotypes. To 
understand the molecular pathology, we aimed to cate-
gorize pathogenic mutations in MCT8  [76] . Mutations 
that delete parts of the gene, affect promoter or splice 
regions, or induce frameshifts are not informative for our 
purpose to understand the membrane protein. Likewise, 
effects by premature termination are likely trivial. This 
leaves us with missense mutations and deletions and in-
sertions of single amino acids, on which we have focused 

our study. As a polytopic membrane protein with 12 
transmembrane domains, MCT8 is an inherently com-
plicated protein to synthesize, and mutations that change 
the vital interactions with the Sec61 translocon or impair 
membrane insertion likely lead to misfolding and target 
the protein for degradation. Indeed, several missense 
mutants of MCT8 were found unstable or not translo-
cated to the plasma membrane  [76, 78] . To illustrate this 
approach, we have calculated the free energy change
of water-to-membrane transitions against wild-type 
MCT8 for three mutants affecting transmembrane helix 
2 (which is close to the substrate-binding site) and com-
pared these to three mutants in transmembrane helix 12 
( fig. 5 ). Calculations were based on the MPEx Translo-
con TM Analysis tool  [79]  based on quantitative analysis 
of the contribution of amino acids to membrane inser-
tion  [80] . The free energy change of these mutations in 
TMH2 was very small, likely not affecting membrane in-
sertion. In contrast, three mutations in TMH12 appre-
ciably increase the free energy of the protein, likely affect-
ing membrane insertion ( fig. 5 ).

  Mutations which introduce or delete Gly and Pro res-
idues  [42]  likely impair protein folding, because Gly allow 
and Pro restrict flexibility. Transmembrane helices also 
often have Gly residues at positions where they approach 
each other closely. Clearly, insertion of any side chain will 
act like a wedge pushing the helices apart. Other mutants 
may lack vital intramolecular interactions and therefore 
be unstable. Such proteins are targets for pharmacologi-
cal chaperones.

  Finally, missense mutations that affect interactions 
with substrate may be particularly revealing  [43] . For
example, His192Arg, Arg445Cys, and Asp498Asn muta-
tions likely affect substrate interactions, if we consider 
above results by targeted mutations and chemical modi-
fication ( fig. 6 ). Ala224Val, Ser194Phe, and Val235Met 
are also assumed to be located towards the substrate-
binding site. Moreover, insV235 and delPhe230 change 
the helix register of helix 2, which on one side forms the 
substrate channel and at the same time interacts with he-
lix 11 from the other 6-helix bundle. 

  Dynamics of the protein may also be affected by path-
ogenic mutations. According to our model, delPhe501 
(and Asp498) is located exactly in the part of helix 10 
which in other transporters undergoes a major rearrange-
ment  [28] , i.e. a sharp kink is formed in another confor-
mation which helps close the cytoplasmic side of the pore.

  Clearly, we do not have an experimental structure of 
MCT8, and only recently the first eukaryotic MFS trans-
porter, GLUT1, has been crystallized  [27] . Therefore, we 
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can interpret biochemical data only on the basis of (ho-
mology) models. Available data suggest that the homol-
ogy model based on GlpT is of some utility for the inter-
pretation of biochemical experiments involving MCT8.

  Conclusion 

 Nature has been creative in designing TH interac-
tion sites in proteins. An analysis of plasma TH-binding 
proteins and TH receptors (for which experimental 
TH:protein complex structures are available), deiodinase 
(for which an experimental structure and biochemical 
data point to a substrate-binding site), and TH trans-
membrane transporters (for which only homology mod-
els and biochemical data on possible substrate interaction 
sites exist) reveals that proteins interact with all features 
of TH except the ether bond (i.e. hydrophobic rings, io-
dine atoms,  L -aminopropionic acid moiety). However, no 
single ‘TH-binding domain’ exists. Evolution converged 
on TH binding from different starting points in funda-
mentally different protein families. While binding pro-

teins, receptors, and enzymes may be optimized for tight 
substrate/ligand binding, transporters have to achieve 
specific interactions, while avoiding tight binding of the 
transport substrate, as binding would stall the transport 
process. Finding out how this is achieved is an import 
goal in MCT8 research. Such data will be of importance 
for the rational design of specific activators or inactiva-
tors of MCT8 which may be useful for the treatment of 
thyroid disease.
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